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predict clinical outcomes in patients who
have acquired acute kidney injury during
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Abstract

Acute kidney injury (AKI) is a common medical problem in hospitalised patients worldwide that may result in
negative physiological, social and economic consequences. Amongst patients admitted to ICU with AKI, over 40%
have had either elective or emergency surgery prior to admission. Predicting outcomes after AKI is difficult and the
decision on whom to initiate RRT with a goal of renal recovery or predict a long-term survival benefit still poses a
challenge for acute care physicians. With the increasing use of electronic healthcare records, artificial intelligence
may allow postoperative AKI prognostication and aid clinical management. Patients will benefit if the data can be
readily accessed andregulatory, ethical and human factors challenges can be overcome.

Magnitude of the clinical problem
Acute kidney injury (AKI) is a common medical prob-
lem in hospitalised patients worldwide that can result in
negative physiological, social and economic conse-
quences. Acute kidney injury is estimated to complicate
12% of hospital admissions in the USA, directly affecting
more than 2 million patients per annum (Al-Jaghbeer
et al., 2018). According to the American College of Sur-
geons National Surgical Quality Improvement Program,
complications caused by AKI occur in approximately 1%
of all general surgery cases, resulting in an eightfold in-
crease in all-cause 30-day mortality (Kheterpal et al.,
2009). The AKI-Epi study showed that 57.3% of all ICU
patients had AKI during a 1-week period. Amongst ICU
patients with AKI, 44% had elective (29%) or emergency
surgery (15%) prior to admission (Hoste et al., 2015).
AKI following major abdominal surgery occurs in 13.4%

of patients and is associated with a 12.6-fold (95% CI,
6.8–23.4) increased relative risk of short-term periopera-
tive mortality (O’Connor et al., 2016). AKI occurs after
22% (median) of cardiac surgical procedures with 3% re-
quiring renal replacement therapy (RRT) (Vandenberghe
et al., 2016).
Patients who sustain AKI that requires dialysis (AKI-

D) represent the severe end of the SA-AKI spectrum.
AKI-D is an acute medical emergency that affects up to
13% of critically ill patients (Hoste et al., 2015). Approxi-
mately 50% of patients with AKI-D will not survive to
hospital discharge, and a further 7% of survivors will re-
main dialysis-dependent at the time of hospital discharge
and beyond (Wang et al., 2019). Even amongst those
who survive and in whom dialysis can be discontinued,
many have new or more severe chronic kidney disease
(CKD) and 2-year survival from the time of hospital dis-
charge amongst those with AKI-D is estimated to be
45–59% (Wonnacott et al., 2014).
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The prediction and prevention of AKI during the in-
traoperative period has been reviewed extensively (Gum-
bert et al., 2020; Meersch et al., 2017). However, the
requirement of a patient with AKI for dialysis represents
an important categorical determinant of their overall
outcome (Wang et al., 2019; Wonnacott et al., 2014). Es-
timating the likelihood of the need for RRT and subse-
quent outcomes at the time that AKI is diagnosed
represents an important challenge for intensivists. This
editorial focuses on the application of machine learning
(ML) and artificial intelligence (AI) to big data to predict
outcomes in patients who have already acquired new
AKI during the perioperative period. We will discuss the
limitations of current approaches to prognostication
after AKI development and the potential role of, and
barriers to, the use of ML/AI for the purpose of out-
come prediction.

Current approaches to AKI prognostication and
their limitations
Predicting outcomes after AKI is difficult and the deci-
sion on whom to initiate RRT with a goal of renal recov-
ery or predict a long-term survival benefit still poses a
challenge for acute care physicians. Observational stud-
ies indicate that baseline estimated glomerular filtration
rate (eGFR), proteinuria, greater age and diabetes melli-
tus are key factors associated with a lesser likelihood of
recovery (Wonnacott et al., 2014). A systematic review
of studies attempting to predict mortality after AKI
highlighted 10 common variables that were frequently
included in the prediction models, namely mechanical
ventilation, age, gender, hypotension, liver failure, oli-
guria, sepsis/septic shock, low serum albumin, low level
of consciousness and low platelet count (Ohnuma &
Uchino, 2017). In a comprehensive meta-analysis look-
ing at adverse events after AKI that included 82 eligible
studies and 2,017,437 patients, of whom 255,264 (12.7%)
developed AKI, male sex, baseline eGFR, coronary heart
disease and diabetes were effect modifiers of the associ-
ation between AKI and mortality. As would be expected,
the risk of end-stage kidney disease (ESKD) increased
with increased severity of AKI, as did ICU mortality. Pa-
tients undergoing angiography procedures and those
with stage 3 AKI were at greatest risk of mortality (See
et al., 2019). A recent meta-analysis identified that dur-
ation of AKI was independently associated with long
term mortality, cardiovascular events and development
of CKD stage 3 (Mehta et al., 2018).
Predicting outcomes in patients who have developed

new AKI in the perioperative period poses a significant
challenge. This is reflected in the limited number of
studies in this area (Srisawat et al., 2011; Lee et al., 2019;
Hoste et al., 2020). Primary outcomes prediction may in-
clude the prediction of those who go onto require

dialysis, remain dialysis dependent or become liberated
from the requirement for dialysis. Secondary outcomes
may include 90-day mortality or 1- and 2-year mortality.
A small study (n = 76), primarily assessing the role of
urinary biomarkers to prognosticate for recovery, found
that a lesser Charlson comorbidity index and Acute
Physiological and Chronic Health Evaluation II (APA-
CHE-II) score were predictors of recovery. The bio-
markers of kidney injury explored in this study were
urinary neutrophil gelatinase-associated lipocalin
(uNGAL), urinary hepatocyte growth factor (uHGF),
urinary cystatin C (uCystatin C), IL-18 and neutrophil
gelatinase-associated lipocalin/matrix metalloproteinase-
9 (Srisawat et al., 2011). Another study (n = 2 214) of
AKI-D patients in the Kaiser Permanente Northern Cali-
fornia electronic health record (EHR) system, derived a
prediction model using age, chronic liver disease, pread-
mission CKD stage and haemoglobin concentration to
predict likelihood of recovery of renal function (Lee
et al., 2019). Recently, a prospective, multinational, ob-
servational study compared the predictive performance
for persistent stage 3 AKI (KDIGO) of C-C motif che-
mokine ligand 14 (CCL14), a novel biomarker for AKI,
with established biomarkers. Included in the comparison
group were cystatin C, proenkephalin, NGAL and L-
FABP. The AUC (0.83) for urinary CCL14 was signifi-
cantly greater than for all other biomarkers. This novel
biomarker of AKI may be useful to incorporate into fu-
ture models to predict recovery from AKI (Hoste et al.,
2020; Zarbock et al., 2018). In the RenalRIP trial, pre-
operative dickkopf-3 (DKK3), a renal tubular stress
marker, was examined for utility of preoperative identifi-
cation of patients at risk for AKI and subsequent kidney
function loss in 733 cardiac surgery patients. DKK3 to
creatinine concentrations higher than 471 pg/mg were
associated with a significantly higher risk for AKI (OR
1.94, 95% CI 1.08–3.47, p = 0.026), persistent renal dys-
function (OR 6.67, 1.67–26.61, p = 0·0072), and dialysis
dependency (OR 13.57, 1.50–122.77, p = 0.020) after 90
days compared with DKK3 to creatinine concentrations
of 471 pg/mg or less (Schunk et al., 2019).
SA-AKI may result from hypovolemia, venodilation

due to anaesthetic agents and positive pressure venti-
lation which may impair venous return. Other factors
associated with increased rates of perioperative AKI
include intraperitoneal open surgery, intraoperative
blood transfusions, haemodynamic instability, intraop-
erative diuretics and use of vasopressors (Meersch
et al., 2017).

Artificial intelligence and machine learning for
AKI prognostication
Artificial intelligence (AI) has a long history in the world
of healthcare. MYCIN was one of the very early expert
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systems for treating blood infections (Shortliffe & Bu-
chanan, 1975). Developed in the 1970s, the system had
the ability to not only make diagnoses, but could also ex-
plain its reasoning. The system had a level of compe-
tence similar to that of human specialists. Expert
systems are still in use today but tend to be described as
rule-based systems or business rules systems, and they
are normally hand-crafted by writing explicit rules that
capture domain-specific expert knowledge (Zhao et al.,
2010). A major advantage of rule-based AI systems is
that they can readily explain their reasoning to human
users and are easy to correct, update and maintain.
One of the most significant developments in AI over

the past 20 years has been the rapid advancements in
machine learning and, in particular, deep learning
(LeCun et al., 2015). These have become amongst the
most commonly used AI techniques in healthcare, dem-
onstrating extraordinary levels of accuracy. For example,
expert-level classification of skin cancer has been re-
ported (Esteva et al., 2017).
However, the inherent complexity of AI may represent

a barrier for clinicians to develop a trustworthy relation-
ship with novel AI based tools. Classic linear methods of
inference such as multivariable regression remain very
attractive to clinicians. Knowledge of input, output and
‘everything in between’ facilitates transparency, reprodu-
cibility and reassures proponents of expert opinion of
how the projections came to be. Despite the accuracy of
deep-learning based approaches, the lack of ability to ex-
plain their reasoning to users has proved a challenge to
a wider acceptance of AI in healthcare. This has led to
the search for Explainable AI, or XAI. Explainable AI in
which some visibility is provided to users of the mechan-
ism underlying a prediction may be particularly valuable
in supporting clinicians to use the outputs of AI/ML
tools (Fellous et al., 2019). An interesting AI technique
that has been recently applied to chronic renal disease is
case-based reasoning (CBR) (Elkader et al., 2018; Tah-
masebian et al., 2016; Vásquez-Morales et al., 2019).
CBR has many distinct advantages in this setting. First,
the technique does not attempt to generalise from case
history. Instead, a classification of the current case, or a
prediction of future outcomes, is made based on similar
cases that have been experienced in the past. This is a
natural approach to applying experience: the clinical
view on the current situation is based on historical ex-
perience. Therefore, one achieves a number of interest-
ing properties: diagnoses are easily explained since the
similar cases that represent the wisdom applied to the
current case directly provide a basis for explanation
(Doyle et al., 2004). The number of similar cases and
other properties of the neighbourhood of the current
case provide a measure of confidence. The case-base of
historical cases itself provides a notion of competence of

the system, and one can also easily evaluate whether
new experiences add value to the system (Smiti &
Elouedi, 2014). While CBR systems might have the same
accuracy levels and can often be comparable to deep
learning systems in particular settings, their transparency
makes them particularly interesting in clinical decision-
making, especially since they essentially automate the
natural reasoning of medical experts.
There are number of hurdles that must be overcome

in order to actualize the full potential of AI as a prog-
nostic tool. An inherent barrier to conducting longitu-
dinal studies to predict outcomes following established
postoperative AKI is the loss of follow-up in the postop-
erative period. Specifically, there is loss of follow-up at a
human level, namely the perioperative physician, but
also loss of data capture in the subsequent postoperative
hours and days when subclinical renal injury occurs.
The intraoperative period should represent the ideal sce-
nario to capture an abundance of granular data that in
turn could be used, firstly to predict AKI and of greater
relevance here to construct outcome prediction models
for outcome after AKI is diagnosed. Despite the more
widespread use of anaesthesia information management
systems (AIMS) to input patient demographics, chronic
medical conditions, anaesthesia and surgical procedures,
pharmacological interventions and physiological trends,
there remains a paucity of studies using these data to en-
hance the care delivered to patients who develop peri-
operative AKI. One reason for this scarcity of research is
that the current diagnostic standard for AKI, namely the
Kidney Disease Improving Global Outcomes (KDIGO)
guidelines has limitations in diagnosing AKI in the peri-
operative period. Urine output often decreases during
the intraoperative period, due to release of aldosterone
and vasopressin associated with stress, hypovolemia or
even anaesthesia (Hahn & Warner, 2010). Studies using
KDIGO frequently omit urine output as a criterion due
to inability to accurately capture the data (Churpek
et al., 2020). Using an increase in serum creatinine, as
diagnostic criterion is also problematic because > 50%
loss of renal function is required, before a resulting in-
crease serum creatinine is observed. Additionally, there
is an estimated time lapse of approximately 48 h between
renal insult and an associated increase in serum creatin-
ine. This phenomenon constitutes a renal ‘blind spot’
(Uchino, 2010). In time, we may see the role of novel
biomarkers of renal injury and recovery, such as CCL14
being incorporated in future deep-learning approaches.
However, unless the patient is in a care setting that al-
lows continuous electronic monitoring, large quantities
of potentially useful data points will continue to be lost.
Another barrier to the development of accurate pre-

diction models is the difficulty in merging data from the
perioperative period to the ICU/surgical ward and
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subsequently to nephrology outpatients and chronic dia-
lysis units. The merging of data from a detailed pre-
operative assessment with high-fidelity data from the
intraoperative period to include the post-operative care
unit would at the very least enable the calculation of
AKI incidence and frequency of initiation of renal re-
placement therapy. Data repositories that collected
meaningful endpoints, to include those who progress to
end-stage kidney disease (ESKD) at 90 days and mortal-
ity data would allow meaningful longitudinal data ana-
lysis. However, even in the era of widespread EHRs,
renal outcome research relies on chart review by experts
in the field (Wonnacott et al., 2014).
There are other challenges to introducing AI solutions

into a clinical setting. While the focus in the literature
tends to focus on achieving maximum diagnostic accur-
acy, there are many other issues to be considered. These
include but are not limited to sensitivity (proportion of
positives correctly classified), specificity (proportion of
negatives correctly classified), false negative rate, false
positive rate, the transparency and explicability of a deci-
sion. The use of AI at any point along the AKI casual
pathway may allow earlier interventions that could im-
prove the patient’s outcome. As the model continually
learns from new data, the ideal goal would be time-
updated risk stratification and prognostication. This has
been attempted using electronic alerts to trigger a con-
sultation from a nephrologist with mixed results (Col-
paert et al., 2012; Wilson et al., 2021). However, given
the low incidence rate (< 10%) of AKI and the potential
of a low positive predictive value, such alerts may result
in stretching the capacity of nephrology services beyond
what is reasonable, offsetting any potential benefit to pa-
tients (Goldstein & Bedoya, 2020). Looking beyond the
perioperative period, it is possible that AI can help guide
appropriate outpatient follow-up and monitor for a
long-term renal recovery after AKI. Recent literature re-
ports of patients who recover from an AKI event, sug-
gest that these patients have an increased risk of
developing chronic kidney disease (Farooqi & Dickhout,
2016; Forni et al., 2017). This raises the prospect that an
AI-led system could be used to follow-up AKI survivors.
There are challenges to testing or validating new pre-

diction models across different healthcare systems and
jurisdictions. Due to restrictions on the international
transfer of data and General Data Protection Regulation
(REGULATION (EU), n.d.). for example, studies are
often limited to a single legislative jurisdiction. Research
involving multi-jurisdictional Electronic Healthcare Re-
cords (EHRs) is hampered by challenges in coordination,
ethical consent, differing protocols and costs. Tradition-
ally, there has been some reluctance to creating and
maintaining open source databases. This is particularly
true in health systems in which EHRs were constructed

primarily for coding of diseases and billing of services.
There is an understandable reluctance to make these
data widely available. In the past decade, there has been
a move towards de-identified Open Data repositories
(Martin et al., 2014). These can enable data generated by
clinical studies to be reanalysed, re-interpreted or aggre-
gated. The degree to which granular data can be easily
assessed is crucial to the development of AI research in
clinical medicine. Broadly, Open Data offers certain ad-
vantages: firstly, they provide transparency which en-
ables audit and accountability; this includes
identification of outliers of poor performance which may
require targeted intervention. Secondly, they provide an
invaluable resource that can drive innovation. The avail-
ability of Open Data can empower citizens and support
clinicians, care providers and researchers to make better
decisions, prompt new developments and identify ineffi-
ciencies, while ensuring that personal data remains con-
fidential. The critical care community has begun to
develop Open Access (largely structured) datasets which
offer rich potential for AI applied to clinical questions
(Johnson et al., 2016; Li et al., 2019; Faltys et al., 2020;
AmsterdamUMCbd, n.d.) “(https://ec.europa.eu/info/
sites/info/files/commission-white-paper-artificial-
intelligence-feb2020_en.pdf)”. It is critically important
that AI systems used in a healthcare setting are trust-
worthy. The European Commission has worked exten-
sively on the notion of human-centric AI, and its High-
Level Expert Group on AI developed a set of Ethics
Guidelines for Trustworthy AI “(https://ec.europa.eu/
info/sites/info/files/commission-white-paper-artificial-
intelligence-feb2020_en.pdf)”.
From where would these big data repositories receive

their data, and what would machine learning algorithms
look like? The performance of any algorithm is only as
good as the data that are imputed. For successful appli-
cation of machine learning techniques to predict clinical
outcomes, an ability to capture and merge all data ac-
quired at pertinent time points along the renal injury
pathway as described above would be required. Specific
to perioperative AKI, the data management system
would need to capture and merge clean data from pre-
operative assessment clinics, intraoperative anaesthesia
information management systems (AIMS), postoperative
care units, intensive care units and the hospital EHRs up
to and including renal outpatients and chronic dialysis
units. Presently, only the most advanced health care net-
works would have the ability to capture such granular
data. An example of the use of AI to forecast an event,
albeit AKI occurrence, is the large study by Tomasev
et al. of 192 hospitals within the VA Health System,
USA. Using data from 703,782 patients, the investigators
divided the data into training (80% of observations), val-
idation (5%), calibration (5%) and testing (10%) sets. The
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training set was used to train the proposed models. The
validation set was used to iteratively improve the models
by selecting the best model architectures and hyperpara-
meters. The models selected on the validation set were
recalibrated on the calibration set in order to further im-
prove the quality of the risk predictions. The best
models were finally evaluated on an independent test set
that was withheld during model development. Using var-
iations of recurrent neural network (RNN), the model
predicts 55.8% of all inpatient episodes of acute kidney
injury, and 90.2% of all acute kidney injury that requires
subsequent administration of dialysis, with a lead time of
up to 48 h and a ratio of 2 false alerts for every true alert
(Tomašev et al., 2019). Using a similar concept, it may
be possible to predict those are less likely to have a
favourable outcome (alive at 90 days) after AKI develop-
ment, redirect goals of care and withhold dialysis in the
first instance. AI in healthcare, using a composite of
electronic data and biomarkers of renal injury, may also
allow electronic phenotyping of patients with AKI. This
would analogous to a biological passport of renal injury.
For example, data clustering may identify subgroups of
AKI patients that are more likely to require long term
dialysis or have limited survival benefit. Again, this
knowledge could aid more informed goals of care.

The role of AI for clinical decision support in
treating patients with AKI
It is possible to imagine that an AI/ML tool could sup-
port a clinical decision at any ‘branch point’ in a stand-
ard management algorithm. In general, the further
downstream the algorithm applied, the greater amount
of patient-specific data available, but fewer effective
measures exist to influence overall outcome. Thus, the
selection of the question of prediction target is import-
ant. Once AKI has been identified (for instance based on
KDIGO criteria) (KDIGO, n.d.) postoperatively, a predic-
tion model could target several important ‘actionable’
targets: in-hospital mortality, requirement for dialysis,
CKD.
Broadly speaking, a clinician would consider that a de-

cision relating to an individual patient which results in a
course of action that benefits the patient as a ‘good deci-
sion’. This presents four important challenges (or con-
straints) to any prediction tool being considered for
decision support:

1. Is the entity being predicted clinically meaningful
(would it matter to the patient?)

2. Is the currently available means for reaching the
decision improved by the new tool?

3. Is the outcome being predicted amenable to change
using existing therapies or interventions?

4. Has the relevance (values of predictive indices) of
the predictor to this patient been quantified?

These constraints pose important limitations to the
value of AI/ML led prediction of outcome for patients
who suffer AKI in the postoperative period. The defini-
tions of AKI and ‘outcome’ currently in use are non-
uniform. Simple linear methods applied to datasets of
modest size already offer good predictive indices for
many patients in the group of interest (at least those to-
wards the extremes of risk) (Ohnuma & Uchino, 2017).
The interventions to be made or withheld based on risk
of mortality (for instance) are also limited (Gaudry et al.,
2016; New Engl J Med, 2020).
How should an AI-based tool which estimates propen-

sity of a future clinical event be incorporated into a clin-
ical decision? The current healthcare model places
responsibility for recommending a course of action
firmly with the clinician (or clinical team). The clinician
assimilates information from various sources (e.g. la-
boratory values, medical images, physical examination,
consultation with the patient and family members) to
offer an ‘expert view’. This model assumes that the doc-
tor is seeking to act in the patient’s best interest, (not
necessarily to ensure optimal use of available resources),
that the clinician is an expert whose estimation of what
will actually happen as a result of different treatments is
good, in particular, that it is superior to the estimation
that the ‘non-expert’ patient would make with the same
information available and that the patient trusts the clin-
ician (Stewart, 1995). The introduction of the new AI
predictive tool poses questions regarding this model:
does the tool supersede the clinician opinion for part of
the decision making activity; does the clinician incorpor-
ate the AI tool’s output into their thinking as another
useful piece of information to be assimilated; does the
AI tool render both clinician and patient ‘non-expert’ for
the purposes of its output and thereby move the patient
to a more central or active role in arriving at a decision?
If dual process theory describes accurately how a clin-
ician arrives at a decision, then he/she employs intuition
(first pathway) and critical thinking (second pathway) to-
gether (Croskerry, 2017). The predictive value of any
novel tool will inform the latter; it is possible that the in-
tuitive weighting or emphasis (first pathway) that a clin-
ician applies to the value will be subject to bias based on
her understanding of, or belief in the novel prediction
tool.

Conclusion
Providing real time accurate prognostication tools to aid
in clinical decision support represents a promising area
in AKI research. At the point at which new AKI is diag-
nosed in the perioperative period, much data is available
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which could be applied to prediction of a clinical out-
come of interest. An accurate prediction of outcome at
that point could inform individual clinical decisions and
improve understanding of the natural history of AKI. It
is not difficult to envisage a useful interaction between
models that predict new AKI and those that predict out-
come after AKI. Patients will benefit if the considerable
data access, regulatory, ethical and human factors chal-
lenges can be overcome.
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